
Segmentation algorithm for DNA sequences

Chun-Ting Zhang,1,* Feng Gao,1 and Ren Zhang2

1Department of Physics, Tianjin University, Tianjin 300072, China
2Department of Epidemiology and Biostatistics, Tianjin Cancer Institute and Hospital, Tianjin 300060, China

�Received 7 March 2005; published 17 October 2005�

A new measure, to quantify the difference between two probability distributions, called the quadratic diver-
gence, has been proposed. Based on the quadratic divergence, a new segmentation algorithm to partition a
given genome or DNA sequence into compositionally distinct domains is put forward. The new algorithm has
been applied to segment the 24 human chromosome sequences, and the boundaries of isochores for each
chromosome were obtained. Compared with the results obtained by using the entropic segmentation algorithm
based on the Jensen-Shannon divergence, both algorithms resulted in all identical coordinates of segmentation
points. An explanation of the equivalence of the two segmentation algorithms is presented. The new algorithm
has a number of advantages. Particularly, it is much simpler and faster than the entropy-based method. There-
fore, the new algorithm is more suitable for analyzing long genome sequences, such as human and other newly
sequenced eukaryotic genome sequences.
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I. INTRODUCTION

The completion of genome sequencing projects for hu-
mans and many other organisms has produced a huge
amount of DNA sequence information. Mining useful bio-
logical knowledge from these DNA sequences currently rep-
resents a challenge to the biological �if not the whole scien-
tific� community. Accumulating evidence shows that there
are a number of turning points in most genome sequences,
through which the nucleotide composition undergoes sudden
changes. Usually, clear biological implications are associated
with turning points. For example, in bacterial �1� and ar-
chaeal �2� genomes, turning points generally correspond
to replication origins. Turning points of G+C �guanine
+cytosine� content distributions of bacterial and archaeal ge-
nomes may correspond to integration sites of horizontally
transferred genes or genomic islands �3�. In human and many
eukaryotic genomes, turning points of G+C content distribu-
tions frequently associate with boundaries of isochores �4�.
Turning points may also be called segmentation points.
Therefore, given the availability of an increasing number of
genome sequences, algorithms to identify genome segmenta-
tion points will play a more and more important role to gain
an understanding of the genome organization. Historically,
many segmentation algorithms were proposed �5–12�, such
as those based on the walking Markov model �5�, hidden
Markov model �6�, change-point problem �7�, recursive en-
tropy �8–10�, the cumulative GC profile �11�, and the wave-
let multiple scale analysis �12�. Recently, a computer pro-
gram �ISOFINDER�, based on a modified version of the
entropic compositional segmentation algorithm, has been
available online and can be used to identify isochores �13�.
Here, a segmentation algorithm is proposed. This algorithm
has a number of differences. Particularly, it is simple and
fast. Therefore, this algorithm is suitable for analyzing long

genome sequences, such as human and other newly se-
quenced eukaryotic genome sequences.

II. THE NEW SEGMENTATION ALGORITHM

Let P= �p1 , p2 , . . . , pk� and Q= �q1 ,q2 , . . . ,qk� be
two probability distributions, where 0� pi ,qi�1, for
i=1,2 , . . . ,k, and �i=1

k pi=1, �i=1
k qi=1. Define

S�P� � �
i=1

k

pi
2, �1�

which was called the genome order index in the case of
k=4 �14�. Let w1 and w2 be two weights, where 0�w1,
w2�1, and w1+w2=1. Define the quadratic divergence be-
tween the two distributions P and Q by

�S�P,Q� = w1S�P� + w2S�Q� − S�w1P + w2Q� . �2�

The quadratic divergence �S�P ,Q� quantifies the difference
between the distributions P and Q. Simple derivation shows
that

�S�P,Q� = w1w2S�P − Q� = w1w2�
i=1

k

�pi − qi�2. �3�

Based on Eq. �3�, some mathematical properties of the qua-
dratic divergence �S�P ,Q� may be derived

�i�

�S�P,Q� � 0, �4�

with �S�P ,Q�=0, if and only if P=Q.
�ii�

�S�P,Q� = �S�Q,P� . �5�

�iii� For three probability distributions P, Q, and M*Email: ctzhang@tju.edu.cn
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�S1/2�P,M� + �S1/2�M,Q� � �S1/2�P,Q� . �6�

The above three properties are obvious, because �S�P ,Q�
calculated in Eq. �3� is the Euclidean distance between the
two vectors P and Q.

�iv� The quadratic divergence �S�P ,Q� reaches its maxi-
mum when the difference between the distributions P and Q
is the maximum among other pairs of P and Q.
The mathematical property �iv� constitutes the basis of the
present segmentation algorithm.

When k=4, as in the case of DNA sequence, Eq. �1� may
be rewritten as

S � S�P� = a2 + c2 + g2 + t2, �7�

where a, c, g, and t denote the occurrence frequencies of A,
C, G, and T, respectively, in a genome or a DNA sequence.
The genome order index S defined in Eq. �7� is a useful
statistical quantity to reflect the compositional characteristics
of a genome �14�. The phenomenon S�1/3 was observed
previously for each of the 90 species, such as human and E.
coli �15�, and confirmed by subsequent work �14�. Obvi-
ously, 1 /4�S�1, and particularly, for almost all �more
than 1000� genomes currently available, it was found that
1 /4�S�1/3 �14�. Furthermore, it was also found that S has
different values in coding and noncoding regions. This fact
was used to recognize protein-coding genes in the budding
yeast genome �16�. The genome order index S may serve as
an appropriate divergence measure to quantify the composi-
tional difference between two DNA sequences. The new seg-
mentation algorithm proposed here is based on the quadratic
divergence. Consider a genome with N bases. Let n be an
integer, 2�n�N−1. For a given n, the genome sequence is
partitioned into two subsequences, one left and the other
right. Let w1=n /N and w2= �N−n� /N. Let Pl= �al ,cl ,gl , tl�
and Pr= �ar ,cr ,gr , tr�, where al ,cl ,gl , tl and ar ,cr ,gr , tr are
the occurrence frequencies of bases A, C, G, and T in the left
and right subsequences, respectively. Define

�S�Pl,Pr� = �n/N�S�Pl� + ��N − n�/N�S�Pr�

− S��n/N�Pl + ��N − n�/N�Pr� . �8�

Suppose that n* is a position at which �S�Pl , Pr� reaches
maximum; then, n* is a compositional segmentation point of
the genome first found. The new algorithm is also recursive
as in Refs. �8–10�, i.e., after n* is determined, the same pro-
cedure is applied to both the left- and right subsequences,
respectively. Recursively apply the procedure until
�S�Pl , Pr� is less than a given threshold. Note that for a
given genome or DNA sequence to be segmented, the third
term of Eq. �8� is a constant. Therefore, it may be ignored.
Define

��n� = �n/N�S�Pl� + ��N − n�/N�S�Pr�, 2 � n � N − 1,

�9�

then ��n*�=maximum. Of course, to search for segmentation
points, one may adopt Eq. �3� directly. That is, let

�S��Pl,Pr� =
n�N − n�

N2 S�Pl − Pr�; �10�

the maximum of �S��Pl , Pr� leads to the same segmentation
points. All Eqs. �8�–�10� result in identical segmentation
points for a given genome or DNA sequence.

Note that S may be rewritten as

S�P� = P̄ = �
i=1

k

pipi = �
i=1

k

pi
2, �11�

indicating that S in fact represents the average probability. In
the case of DNA sequence �k=4�, S is the average probabil-
ity of occurrence of A, C, G, and T in a DNA sequence.
Given a DNA sequence to be segmented, the segmentation
point is at the position where the difference between the
average probabilities of occurrence of four bases in the two
resulting subsequences reaches the maximum. In general,
S�P�=�i=1

k pi
����2� can also be used to quantify the differ-

ence between two probability distributions. Both theoretical
proof and computational experiments show that positions of
segmentation points are independent of the choice of � val-
ues. However, �=2 is chosen because of obvious physical
and biological implications and computation efficiency. In
other words, the choice of �=2 is reasonable to partition a
given genome or DNA sequence into compositionally dis-
tinct domains.

A question needed to be answered is the halting
condition of the segmentation algorithm. We define a halting
parameter t

t = N�S�Pl,Pr� , �12�

where N is the length of the sequence or subsequence to be
segmented. If t� t0, the segmentation procedure halts; other-
wise, the procedure continues until t� t0. Since we are only
interested in segmenting concrete genomes, the choice of t0
is based on heuristic considerations. Larger threshold t0 leads
to fewer segmentation points and longer segmented subse-
quences, whereas smaller threshold t0 leads to more segmen-
tation points and shorter segmented subsequences. It should
be noted that in some cases the segmentation procedure also
halts when the resulting subsequence is shorter than a given
minimum length. For prokaryotic genomes, we choose
1000 bp as the minimum length, roughly the size of a
prokaryotic gene. For eukaryotic genomes, we choose
3000 bp as the minimum length according to a requirement
imposed by the experimental characterization of isochores
through DNA centrifugation �4�. In general, the choice of t0
and the minimum length is heuristic and depends on each
case.

III. COMPARISON WITH THE ENTROPIC
SEGMENTATION ALGORITHM

It is interesting to compare the new segmentation algo-
rithm with the entropic segmentation algorithm �8–10�. Note
that the Shannon entropy H for a DNA sequence is defined
by

ZHANG, GAO, AND ZHANG PHYSICAL REVIEW E 72, 041917 �2005�

041917-2



H = − a log2 a − c log2 c − g log2 g − t log2 t, H � �0, 2� .

�13�

The Jensen-Shannon divergence is defined by �8–10�

D�n� = H − 	 n

N
Hleft +

N − n

N
Hright
, n = 2, . . . ,N − 1,

�14�

where Hleft and Hright are the Shannon entropy for the left and
right subsequences, respectively. Suppose that n* is calcu-
lated by D�n*�=max D�n�; if D�n*� is above a given thresh-
old, then n* is deemed a segmentation point �8–10�.

Both the new and entropic segmentation algorithms were
used to locate segmentation points for a given genome or
DNA sequence. It is interesting to see if the two algorithms
result in the same or different results. Here, we used some
well-established isochore examples to test both algorithms.
The human major histocompatibility complex �MHC� se-
quence is situated at the human chromosome 6p21 region.
This sequence carries 224 genes, many of which are in-
volved in some important human genetic diseases such as
arthritis and diabetes. The MHC sequence is 3 673 778 bp in
length, which was sequenced before the completion of the
whole human genome project. The isochore structure of the
MHC sequence has undergone extensive studies during the
past few years, because the best known isochore boundary
within this sequence was confirmed experimentally �17�.
Therefore, the sequence becomes a touchstone for testing
any segmentation algorithm. In order to explore the isochore
structure, it is necessary to convert the DNA sequence into a
binary sequence of S �strong H-bond� and W �weak H-bond�
bases. Table I shows the segmentation points obtained by the
present method based on this binary sequence. The most re-
markable result is that the coordinates of segmentation points
derived from the genome order index and entropy-based seg-
mentation algorithms are all identical for each figure at each
digit! The fact that the two sets of numbers are all identical
indicates that both algorithms are accurately consistent with
each other. We have also applied our algorithm to other hu-
man chromosomes �data not shown here�. The coordinates of
segmentation points obtained are all identical with those de-
rived from the entropic segmentation algorithm.

One may wonder why the two algorithms yield identical
results. Our explanation is as follows. According to the in-
formation theory, the Shannon information entropy H is de-
fined in Eq. �13� in the case of DNA sequence. The differ-
ence between Hmax and H, denoted by D

D = Hmax − H = 2 − H , �15�

is called the negative entropy. Using the values of S and H
for 627 virus genomes, the correlation coefficient between S
and H is calculated and found to be equal to −1 �14�. To
further study the relation between the Shannon entropy H
and the genome order index S, the values of H and S for
more than 1000 genome sequences were calculated, includ-
ing the human, mouse, rat, C. elegans, yeast, Arabidopsis
thaliana, more than 100 bacterial and archaeal genomes, and
more than 600 virus genomes. Figure 1 shows the relation of

H�S. It shows that the correlation coefficient between H
and S is almost −1, indicating that they are negatively corre-
lated. The above result also implies that the genome order
index S defined in Eq. �7� plays a role of some kind of
negative entropy. As pointed out above, in the case of DNA
sequence �k=4�, S is the average probability of occurrence of
A, C, G, and T in a DNA sequence. Given a DNA sequence
to be segmented, the segmentation point is at the position
where the difference between the average probabilities of
occurrence of four bases in the two resulting subsequences
reaches the maximum. In contrast, H represents an appropri-
ate measure of average randomness or uncertainty for a
given probability distribution. The segmentation of a DNA
sequence using H�P� is based on the consideration of maxi-
mum difference between the average uncertainty of nucle-
otide distribution in the two resulting subsequences. Obvi-
ously, our segmentation algorithm is more straight to
partition a DNA sequence into compositionally distinct do-
mains, and needs less calculation than H�P�. The above facts
may give an explanation of the equivalence of the two seg-
mentation algorithms, but it cannot serve as a mathematical

TABLE I. The coordinates of segmentation points obtained by
the present segmentation method for the human MHC sequence.
Note that the coordinates of segmentation points derived from the
genome order index and the entropy-based segmentation methods
�s0=10� are all identical for each figure at each digit! Refer to Ref.
�10� for detail of the entropic segmentation algorithm and the defi-
nition of the strength parameter s0.

No. Segmentation points

1 299270

2 354226

3 364029

4 833239

5 1168415

6 1244738

7 1396980

8 1490846

9 1662756

10 1709646

11 1712970

12 1715527

13 1739420

14 1742437

15 1841871

16 2483966

17 3054365

18 3088089

19 3159420

20 3384907

21 3444780

22 3491519

23 3552176

24 3638110
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proof. We will leave the mathematical proof to mathemati-
cians who are interested in this issue.

Our algorithm has a series of merits. First, the genome
order index S possesses simpler mathematical form than that
of the Shannon entropy H. Second, the algorithm needs less
calculation than that of the entropy-based algorithm, and is
fast. This feature is particularly useful for segmenting long
genome sequences, such as the human genome and other
eukaryotic genomes. Third, the genome order index S has a
clear geometrical meaning, i.e., it is a square of a Euclidean
distance �14�. It represents a deviation of the given probabil-
ity distribution in a genome from the equal distribution of
nucleotides �a=c=g= t=1/4�. Fourth, S possesses clear bio-
logical implications. Note that S may be rewritten as �14�

S =
1

2
+

1

2
�a − t�2 +

1

2
�g − c�2 − �a + t��g + c� . �16�

The second and third terms are directly related to the devia-
tions from the Chargaff parity rule 2 �PR2�. If the PR2 is
strictly correct, the two terms should be equal to 0. In fact,
both a− t and g−c are small quantities in real genomes.
Therefore, the genome order index S is mainly relevant to the
G+C or A+T content of the genome. It appears that S con-
tains more information than the G+C content contains.
Therefore, in addition to the widely used G+C content, S
would be a new biological statistical quantity useful to de-
scribe the compositional features of genomes. Usually, S has
different values in coding and noncoding regions. This fact
was used to recognize protein-coding genes in the budding

yeast genome �16�. Finally, the segmentation algorithm is
different from the entropic one in that the former is able to
provide an intuitive picture by incorporating with the
Z-curve representation of DNA sequences �18�. For example,
in the case of the G+C content, Eq. �10� reduces to

�S� � ��G + C�l − �G + C�r�2, �17�

where �G+C�l and �G+C�r are the average G+C content of
the subsequences at the left- and right hand sides of the seg-
mentation point concerned, respectively. Therefore, such
segmentation point is exactly a turning point of the G+C
content, which corresponds to an extreme point in the cumu-
lative GC profile �11�. Consequently, we may use the seg-
mentation coordinate to annotate the related cumulative GC
profile, giving researchers an intuitive picture. In what fol-
lows, we will show some concrete examples.

IV. APPLICATION EXAMPLES OF THE SEGMENTATION
ALGORITHM

The segmentation algorithm may find many applications
in genome sequence analysis. For example, in Ref. �9� the
entropic segmentation algorithm has been applied to study a
number of genome problems, including the isochore map-
ping, CpG island detection, identification of the replication
origin and terminus in bacterial genomes, identification of
complex repeats in telomere sequences, and delineating cod-
ing and noncoding regions. Additionally, the possibility to
detect horizontally transferred genes in a genome using a
segmentation method has been proposed �3�. The segmenta-
tion algorithm proposed here may find applications in all of
the above areas, but a simple form and fast calculations. As
mentioned above, collaborating with the technique of cumu-
lative GC profile �11�, a more intuitive picture to display the
distribution of segmentation points will be presented. In what
follows, as an example, we will study the isochore structure
of human chromosome 21 and chimpanzee chromosome 22.
The human genome sequences, release hg17, the chimpanzee
genome sequences, release panTro1, and the annotation files
were downloaded from http://genome.ucsc.edu/.

Figure 2 shows the negative cumulative GC profiles for
human chromosome 21 and chimpanzee chromosome 22.
Note that in each chromosome there are a number of larger
or smaller gaps. Here, only gaps more than 1% of the chro-
mosome size were retained; gaps less than 1% of the chro-
mosome size were simply deleted. Consequently, each chro-
mosome was split into two contigs. The first contig was not
taken into consideration due to small size. For the larger
contig, the constituting subcontigs are simply merged, as if
there were no gaps. Applying the segmentation algorithm to
the resulting contig of each chromosome, the segmentation
points were obtained at t0=1000. In addition, the cumulative
GC profile is also called the zn� curve, which is a discrete
function of the nucleotide position n in a genome or chro-
mosome. It was shown that the average G+C content of a
genome or chromosome at position n→n+�n is calculated
by �11�

FIG. 1. To study the relation between the Shannon entropy H
and the genome order index S, the values of H �defined in Eq. �13��
and S �defined in Eq. �7�� for more than 1000 genome sequences
were calculated, including the human, mouse, rat, C. elegans, yeast,
Arabidopsis thaliana, more than 100 bacterial and archaeal ge-
nomes, and more than 600 virus genomes. This figure shows that
the correlation coefficient R between H and S is almost −1, indicat-
ing that H and S are negatively correlated, also implying that the
genome order index S plays a role of some kind of negative entropy.
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G + C � ��− zn��/�n . �18�

Therefore, an up jump in the −zn� curve indicates an increase
of the G+C content, whereas a drop in the −zn� curve indi-
cates a decrease of the G+C content. An approximate

straight region in the −zn� curve implies that the G+C content
in this region is roughly constant. Bearing the above points
in mind, let us study the negative cumulative GC profiles
shown in Fig. 2. It is seen that when the threshold t0 was set
to 1000, nine segmentation points were obtained in the hu-

FIG. 2. The negative cumula-
tive GC profiles for human chro-
mosome 21 and chimpanzee chro-
mosome 22 marked with the
segmentation points obtained. The
notation used here is described as
follows. Besides the position co-
ordinates, the order of occurrence
for each point in the segmentation
process is also labeled in the fig-
ure. We use “f ,” “l,” “r,” and an
integer to label the order of occur-
rence, where f denotes the first
point occurring during the course
of segmentation, whereas l and r
denote the point to occur in the
left- and right subsequence, re-
spectively. The integer denotes the
times of segmentation. Take the
point 43 443 502−r2l4 as an ex-
ample. The first part 43 443 502 is
the position coordinates. The sec-
ond part “r2l4” denotes the order
of occurrence. The last integer “4”
in the second part means that this
point occurs after four times of
segmentation. In the symbol “r2l,”
r appears two times, so we used “
r2” instead of “rr” for conve-
nience. The bottom four plots
show the distributions of the G
+C content, Alu, CpG island, and
gene along human chromosome
21, respectively. Note that all of
these distributions are closely cor-
related with the segmented re-
gions with distinct G+C content.
Also note that the coordinate
value of each segmentation point
has been corrected by taking the
gap length into account. For in-
stance, there is a gap occurring at
n0→n0+�, where � is the gap
length. If a segmentation point ob-
tained is situated at n, and n�n0,
then the actual coordinate of n
adopted in this plot is n+�.
Meanwhile, the gap region n0

→n0+� is represented by a blank
interval in this plot. Here, n0 and n
are the relative coordinates with
respect to the contig without gaps.
Other gaps are treated with a simi-
lar procedure.
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man chromosome 21 �the larger contig�, resulting in ten re-
gions with distinct G+C contents. The region from
18 462 576 to 25 653 300 bp was deemed as an isochore
�10,12�. The G+C content of this isochore �with length
=7.2 Mb� is 35.1%, the lowest G+C content among the re-
sulting ten regions. It is clearly shown that this region is the
desert region of gene/Alu /CpG island distributions, which
were calculated in 100 kb long, nonoverlapping windows.
The positive correlation between the G+C content and the
density of Alu, CpG island, and gene is a well-known fact;
however, it is noteworthy that the segmentation points ob-
tained here are exactly the boundaries of the related regions.
For example, there is an abrupt increase �decrease� of the
densities of Alu /CpG island �gene� at the first �second�
boundary of the short G+C-rich region between 17 565 487
and 18 462 575 bp. Similar phenomena were observed in
other G+C distinct regions. The precise boundary coordi-
nates obtained by the segmentation algorithm and the asso-
ciated cumulative GC profile provide a useful platform to
analyze a genome or chromosome. For instance, gene-
finding algorithms would benefit from these boundary coor-
dinates. To gain better gene-finding results, different param-
eters would be adopted in a gene-finding algorithm by
considering different regions of distinct G+C content with
precise boundary coordinates.

It was reported �19� that the difference between human
chromosome 21 and chimpanzee chromosome 22 caused by
single base substitution is 1.44%. In addition, there are about
68 000 indels of the two chromosomes, where most indels
are about 30 bp in length, with a few reaching 54 000 bp.
Consequently, human chromosome 21 is about 400 kb longer
than chimpanzee chromosome 22. The above two variations
lead to a difference of about 5% between the two chromo-

somes. Although there are relatively large sequence varia-
tions between the human chromosome 21 and chimpanzee
chromosome 22, comparison based on their cumulative GC
profiles showed that these two chromosomes have similar
isochore structures, including the numbers and positions of
segmentation points. This fact suggests that the same evolu-
tionary forces might have shaped genome organization in
both organisms, and the isochore structure is highly con-
served during the evolution of these two organisms. It is
reasonable to deduce that such genome organization �the iso-
chore structure� plays an important role in keeping the sur-
vival for both organisms.

In summary, the cumulative GC profile marked with the
coordinates of resulting segmentation points is a useful tool
for genome analysis. This leads to a neat graphical represen-
tation of G+C content variation along a genome or chromo-
some, and a clear-cut definition of isochores. This technique
allowed us to show and confirm that G+C-rich isochores in
a human or chimpanzee chromosome have higher gene, CpG
island, and Alu densities than A+T-rich isochores. Although
these are well-known characteristics of isochores of the ver-
tebrate organisms, the advantage of the technique is that an
investigator is able to study all of these in a perceivable and
precise manner. We believe that plots similar to Fig. 2 would
become a common tool for analyzing the G+C content varia-
tions for genome or chromosome sequences. For higher eu-
karyotic genomes, the cumulative GC profile equipped with
the segmentation algorithm would be an appropriate starting
point for analyzing isochore structures.
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